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Abstract 

A general theory of the diffuse scattering which has 
previously been developed on the basis of a micro- 
domain model [Hashimoto (1974). Acta Cryst. A30, 
792-798] is applied to the three special cases in which 
the microdomains have the ordered structures denoted 
by L 12, L 10 and L 1 r The practical intensity formula is 
presented in each case, which can be used to obtain, 
from the observed X-ray intensity distribution, the 
statistical nature of the microdomains; the average size, 
the size distribution, the number density and the spatial 
interdomain correlation. 

1. Introduction 

In the disordered state of many alloys, the diffuse 
scattering of X-rays and electrons is often enhanced 
around the directions of the superlattice reflections 
expected in the ordered state. In some cases, for 
example in Cu-Au alloys, fine structure is noticeable in 
these enhanced diffuse spots. These observations 
suggest that there exists an ordering of constituent 
atoms even in the disordered alloys. 

For interpreting these observations, the author 
developed a diffraction theory based on a micro- 
domain model in the previous paper* (Hashimoto, 
1974). The model assumes that relatively well-ordered 
microdomains are dispersed in the disordered matrix. 
This is in contrast with the homogeneous model, in 
which every part of the specimen is assumed to be 
characterized by a pair correlation of alloyed atoms. 
Inhomogeneous models similar to the present one were 
proposed as a realistic model by several investigators, 
as mentioned in I, and recent electron microscopic 
observations (Sinclair & Thomas, 1975; Tanaka, 
Ohshima, Harada & Mihama, 1979) support the model. 

The main purpose of the present paper is to derive 
the formulae of the diffraction intensity for a few 
specific ordered structures of the microdomains. Also 

* Hereafter, the paper is referred to as I. 
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presented are the practical procedures to analyze the 
observed intensity of diffuse scattering and to obtain 
information on the statistical nature of the micro- 
domains. The types of ordered structures with which we 
are concerned here are L1E(CUaAU), L10(CuAu ) and 
L 1 l(CuPt). 

2. Basic equations 

The intensities of the diffuse scattering are given in the 
forms (Hashimoto, 1974) 

Isro(q) = I, M(q) + IMp(q), 

ILM(q)= nrmA mnl fa -- fsl 2, 

IMD(q) = I°D(q) + l~D(q), 

( la)  

(lb) 

(lc) 

IOD(q) -- mA mB 
vg 

I f  a -- fBI 2 X Z Y N t et2(q,) . f i t ' )  IG  t ' 
GI t t' 

( ld)  

i / b iD(q)_  mA m~ 
v0 ~ 

where 

and 

[)c a - -  fB[ 2 E ~ ~ N t ~t(qi) ee(qi) 
G~ t t' 

× Ytd~')Pu'(qi), (le) 

qi ~ q -  Gt, (2) 

) 

Ptt,(qi) = f Pit,(X) exp (27riqi. X) dX. (3) 

The notation employed is the same as in I. The 
intensities ILM(q ) and IMD(q ) are those due to the 
disordered matrix and the ordered microdomains, 
respectively. IOo(q) is the intensity expected if the 
correlations between the microdomains are neglected 
and I/Mo(q) is the term due to the interdomain 
correlations. The addition of I/MD is an improvement in 
the present treatment. 
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3. Intensity equations for special cases 

Before going into details, we indicate how the vector G i 
in (1 d) and (1 e) is defined from the experimental data. 

If the microdomain structure of the short-range- 
ordered alloy is such that all the atoms are located on 
the sites of an average lattice, the distribution of  diffuse 
scattering intensity is centrosymmetric and its center is 
at the position of the superlattice reflection. In this 
simplest case, the vector Gg can be defined by the center 
of the distribution. 

In real alloys, however, the constituent atoms have 
different sizes so that they are displaced differently 
from the atomic positions of the average lattice, and the 
intensity distribution is non-symmetric. Boric & Sparks 
(1964, 1971; Sparks & Boric, 1965) analyzed the 
effects of atomic size on the intensity distribution and 
gave a method to subtract the effects from the observed 
distribution. We assume here that the intensity distri- 
bution has already been corrected for the effects by the 
Boric & Sparks' method and define the vector G i by the 
center of the diffuse maximum. 

In the following subsections, we shall derive the 
intensity equations appropriate for each of the cases in 
which the microdomains have the L12, L10 and L I~ 
structures. 

(a) L 12 internal  s tructure  

The microdomains with the L 12 structure have four 
types of order (see Fig. 5 of I), which are mutually in an 
antiphase relation. There is no need to differentiate 
between these four types of microdomains in their 
average shape, and suffix t of et(q) ( t--  1-4), the form 
factor, can be omitted. 

The phase factor 7tt~ ') between the tth and t'th types 
of order can be expressed in terms of the so-called step 
shift vector  ~tt' as 

~,(t,,) (~) exp (2rciGi. l~tt,), (4) Gt = 

according to (I-10) and (I-12). It is easily shown that 
the vector ~Jtt, is identical to one of the following four 
vectors; 

~ = 0, ~12-- (½) a[1101, 

 13-(½)a[011] and (5) 

Similarly, the interdomain correlation functions Ptt , (X)  
or their Fourier transforms Pn'(q) can be reduced to 
four independent ones, denoted by Pxt(X) or Pit(q), 
respectively. 

Thus, from (la)-(le) ,  the intensities divided by a 
common factor nmA ms l fa - fs 12 are given by 

a(q) = a r + a°(q) + at(q), (6a) 

a r =  nr/n,  (6b) 

Na y" eE(qi),~,(ll) (6c) 
a°(q) = nv 2 o, , o , ,  

Nd ~. e2(qi) ~ ~(l,t)Plt(qi), (6d) 
ai(q) = nv~ o, t : l  

where a(q), a r, etc. are expressed in the Laue monotonic 
units and N t in (1) is replaced by Nd/4 ,  N d being the 
total number of the microdomains. 

If there is no appreciable overlapping of e(qi)'s 
belonging to different superlattice reflections, we have, 
in the vicinity of G i, 

Na e2(qi), (Va) 
a°(qi) = 3nv-----~o 

N d a 
ai(qi) = nv 2 e2(qi) t=lE ~'tGlt)Pu(q), (Vb) 

where a°(qi) and ai(qi) are defined as a function of the 
vector deviation from G~. 

It is convenient to define a reduced intensity 

D(qi) = ai(qi) /a°(qi) .  (8) 

Then, from (Va) and (Vb), it follows that 

4 

D(qi)= 3 E rO, t)Plt(qi)  (9) 
t = l  

and its Fourier transform is given by 
4 

DG,(X) = 3 Z )'td D Pu(X), (9') 
t = l  

for any interdomain vector X. 
For the L12 structure, there are three independent 

superlattice reflections, e.g. 100, 010 and 001. Thus, 
(9') can be written in an explicit form: 

D100(X) = P , I ( X ) -  P,2(X) + Paa(X)-  P14(X), 

(10a) 

Dolo(X) = P , , ( X ) -  Pa2(X)-  Pas(X) + P,4(X), 

(10b) 

D00~(X ) = PII(X) + P12(X)- P I 3 ( X ) -  P14(X), 

(10c) 

with the use of y~lt) given in Table 1 of I. By solving 
these equations, any difference between the inter- 
domain correlation functions Pu(X) can be obtained. 

(b) L 1 o internal  s tructure  

As illustrated in Fig. 1, six types of order are possible 
for the microdomain structure. They can be put into 
three groups. The constituents of each group have a 
tetragonal structure with the c axis in common and are 
in an antiphase relation with one another. Then one can 
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see an identity Et(qi ) : Et+3(qi ) (t = 1-3). The phase 
factor 7~  ') vanishes, as shown in Table 1, unless the 
order types t and t' belong to the same group. F rom this 
property of  the phase  factor, it can be seen that a 
modulat ion of  the diffuse intensity around any 
particular G~ is due to the correlation between the 
microdomains  of the same group• 

The intensities can be written as 

a ( q ) = a  r + a°(q) + ai(q), ( l l a )  

C~ r = nr/n , (1 lb) 

1 3 
t ~( t t )  

a°(q) = nv 2 ZG, ,=X, N; e2(qi) (1 lc) 

Table 1 ~(tt,) for  the case o f  the L 1 o ordered structure 
• I G t  

y ( t t ' )  
Gi 

t t' Goo 1 Glo o Golo 

1 l 0 0 
1 4 - 1  0 0 

2 0 1 0 
2 5 0 - 1  0 

3 0 0 1 
3 6 0 0 - 1  

o 11 
--o--[;7 

w (1 )  

© 

--L7 
w 

( 2 )  

i i 
o io 

Z -Q--  • -- 
~ I  ~ '  ( 3 )  (6 )  

Y 
--- x 

Fig. 1. Six types of ordered lattice of the L 10 structure. Open and 
solid circles indicate different kinds of atoms. These are in three 
groups, which consist of (1) and (4), (2) and (5), and (3) and (6). 

1 3 
I ~ ( t t ' )  

- -  I G  t ai(q) = nv~ G, ~ t=l • Nt e2(q~ t,:t,t+3Z Ptt,(qt), 

where N[ = N t + Nt+ 3. In the case where the over- 
lapping of diffuse scattering belonging to different Gi's 
can be neglected, (1 lc) and (1 ld)  are simplified to 

N[ et2(qi), (12a) 
a°(qi) = nv----~o 

N~ t2(qi){Ptt(qi)_Pt, t+3(qi)}" (12b) 
ai(q,) = nv---~o 

Following the arguments  described in subsection (a), 
we have here 

D G , ( X ) : P t t ( X ) - - P t ,  t+3(X ). (13) 

Thus,  from the reduced intensity, we can obtain the 
difference between the spatial correlations of  the 
microdomains  belonging to the same group. 

(c) L 11 internal structure 

In this case, there are eight types of microdomain  
structures, as illustrated in Fig. 2, which can be grouped 

(4) 

l p '  

(5) I C ) ~ . _ ~  (71 
(3) 

Fig. 2. Eight types of ordered lattice of the L 11 structure. Open and 
solid circles indicate different kinds of atoms. These are in four 
groups, which consist of (1) and (5), (2) and (6), (3) and (7), and 
(4) and (8). 



514 MODEL FOR SHORT-RANGE-ORDERED ALLOY STRUCTURES. II 

into four, each with the rhombohedral axis in common. 
The phase factors 7g~ ') are given in Table 2. The 
correlation between the microdomains of different 
groups is shown not to modulate the diffuse intensity, 
and the intensity formulae are derived as 

N[  e2(qi),  (14a) 
ao(qi) = nV----~oo 

iV[ e2(qi){Ptt(qi)_Pt, t+4(qi)} ' (14b) ai(qi) = nv----~o 

N[ being the total number of the microdomains of the 
tth and (t + 4)th types. We obtain from (14a) and (14b) 

Dc,(X) = Ptt(X)-- Pt.t+4(X). (15) 

This is similar to (13) obtained in the case of L 1 o. 

4. Separation of ~°(qt) and ~t(qt) from the diffuse 
scattering 

In order to obtain the interdomain correlation with the 
formulae derived above, it is necessary for a°(qi) and 

Table 2. ~j(tt') for  the case of  the L 1 ~ ordered structure 
y(tt') 
Gt 

t t' G½½½ G½h Gt~ 4 Gh~ 
1 1 0 0 0 

1 5 - 1  0 0 0 

2 0 1 0 0 
2 6 0 - 1  0 0 

3 0 0 1 0 
3 7 0 0 - l  0 

4 0 0 0 1 
4 8 0 0 0 - 1  

ai(qi) to be evaluated separately from observed 
intensities. Let am(qi) =-- a°(q~) + ai(qt). It is obtained 
by subtracting a constant part a r from the total 
intensity a(q), as shown in Fig. 3. 

We shall define a function a~,(R) as 

a~,(R) = v 0 f 
(around G~) 

a m ( q i )  exp (--2niq i. R) dqi, (16) 

where the integration is carried out over a zone defined 
by the planes which are perpendicular bisectors of the 
vectors joining the point G i to its neighboring super- 
lattice reflection positions. On the boundaries of the 
zone, am(q3 takes negligibly small values. Our ex- 
periences with several alloys have shown that a~,(R) 
takes the form schematically shown in Fig. 4. Ap- 
pearance of a negative part in a~,(R), indicated by A, is 
due to the fine structure of the intensity distribution in  
the vicinity of Gi (Fig. 3), and suggests the existence of 
the spatial correlation between the microdomains in an 
antiphase relation with each other. In the region of 
small R indicated by B in Fig. 4, however, a ~,(R) is not 
much affected by the interdomain correlation and, 
therefore, it is not unreasonable to assume that its form 
is determined only by a°,(R), the Fourier transform of 
a°(q~). Since this part of the intensity arises from the 
independent scattering of X-rays by the microdomains, 
a°,(R) must in general monotonically decrease to zero 
with increasing R. With the form observed in region B 
in Fig. 4, it is possible to find a smooth function by 
fitting to a ~,(R) in this region and extrapolating it into 
the region of large R (dotted line in Fig. 4). ai(qi) is 
given by the difference between am(qi) and the Fourier 
transform of the function evaluated as a°,(R). Thus, 
one can obtain a°(qi) and ai(qi) separately from the 
observed intensity a(q) to a reasonable approximation. 

In reciprocal space 

a(qi) 

0 t 0 ( q i )  + (t r 

Ct r 

L x. j_ . . . . .  

- - T  -1 
0 Gi H 

Fig. 3. Relationship between a r, a°(ql), at(qt) and am(qi) in one 
dimension. 

In real space 

. . . . . . . . .  ~,(R) 

I I  

,(R) 

0 ~ " - ' - - - - - - - - - - ' ~  R 

Fig. 4. Relationship between a~,(R), a~,(R) and a~,(R). 



S. HASHIMOTO 515 

5. Average size and number density of the 
microdomain 

Perfect ordering in the central region of the micro- 
domains requires 

The square of the form factor et(q) defined in I can be 
written down explicitly as 

eE(q) = f f Et(r ) Et(r + R)exp (2niq.R) dr dR 

= (v~/Nt) Z Z Y. Eu(Ri) Eu(Ri + Rt) 
u Rt Rl 

× exp (2zdq. R/) 

= (1/Nt) ~' leu(q)l 2, (17) 
u 

where e,(q) is the Fourier transform of the shape 
function of the individual domain E,(Ri), and the prime 
indicates the limited sum taken only over the micro- 
domains of tth type. We will derive the statistical 
parameters for the microdomain structure using the 
property of Eu(R i) given in (I-6). 

Integration of a°(q~) given by (7a), (12a) and (14a) 
with respect to q~ leads to 

v o a°(qi) dqi = (N'~/n) Z E2(RI) 
It R I 

(around G l) 

=N[<n)t/n, (18) 

through (17). N~ must be replaced by Na/3 in the case 
of L 12. (n)t is the average number of atoms contained 
in a single microdomain of the tth type. Equation (18) 
gives a ratio of the total number of atoms in the 
microdomains of the tth [tth and (t + 3)th for L10, and 
tth and (t + 4)th for L 1,] type and the total number of 
atoms in the alloy crystal. Another useful relation is 

a°(q~ = 0 ) =  (N[ /n) Z' l Y Eu(R i) Y Eu(Ri) / 
u I, R t Rj ! 

= N~(n2)t/n. (19) 

Further, we consider an integral 

[ O f {o~O(qi)} I/2 dq,= ( N ; / n )  1,2 et(qi) dq/. (20) 

This integral cannot be evaluated directly. Let R u 
indicate a central position of the domain labeled with u, 
and let Eu(R) be Fourier transformed taking R u as an 
origin as 

eu(q) = f Eu(R)exp(--27dq'R-- Ru) dR. (21) 

We then define an average function et(q): 

et(q) = (1/Nt) Y' eu(q). (22) 
u 

I et(q)dq=(1/Nt)Y' Eu(Ru)= 1. (23) 
u 

We introduce a factor r/(q) as 

For q = 0, 

et(q) = r/(q) et(q). (24) 

r/(O)- ~ - \ ( n ) t  2] , (25) 

since et(O)= ( n ) r  If we neglect the q dependence of 
r/(q) and replace it in (24) by r/(0), we can readily 
evaluate the integral in (20) and obtain 

v o j- {a°(qi)} v2 dq i=  (N~/n)V2((n2)t/(n)2t)v2. (26) 

We can then solve (18), (19) and (26) for the average 
number of atoms (n)t in a single microdomain, its mean 
square (n2>t and the number density of the domains 
N;/n. 

A quantity 

a2=(n2)t--(n) 2 (27) 

gives a measure of the broadness of the atom number 
distribution and hence the domain size distribution 
around the average. 

Finally, the form factor et(q) can be derived from 
(7a), (12a) and (14a) and, therefore, its Fourier 
transform Et(R) also. Et(R) is generally a smooth 
function in real space, which is a kind of average shape 
function for the microdomain. 

6. Discussion 

The inhomogeneous models of the short-range-ordered 
alloys already proposed by several investigators were 
not developed quantitatively in the sense that the 
observed intensity distribution and the statistical 
parameters of the microdomain structure were directly 
connected. Along with the parameters, such as the 
average domain size and the size distribution, we 
introduced in this series of papers an interdomain 
correlation, which gives rise to the fine structures on the 
diffuse maxima. The present author (Hashimoto & 
Iwasaki, 1979) reported microdomain model analyses 
for CuPt and CuAu alloys, in which the present model 
was applied successfully. 

In some short-range-ordered alloys, we found e to be 
extraordinarily larger than (rt)t calculated in the way 
described in § 5. We shall discuss this kind of 
abnormal, contradictory result. 
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0 .2 defined in § 5 is nothing but 

0.2 = (n/N[){a°(q~= O)- vo f a°(qi) dqi} 

1 Et(R ) dR E2(R) dR . (28) = 

From the physical meaning of 0 .2 , it should not be large 
compared with (n )  2 in (27) and hence the second term 
on the right-hand side of (28). Throughout the 
arguments developed above, it was assumed that the 
shape function of the individual domain Eu(Ri) had the 
form of a step function, but if there exists an 
inhomogeneous ordering within a domain, (7 .2 will have 
a relatively large value. For the sake of convenience, we 
consider the shape of the microdomains to be identical 
and use St(R), called the 'ordering function', instead of 
Et(R) in (28). The relationship between these two 
functions is illustrated in Fig. 5, along with S2(R). 
From this figure it can readily be seen that the integrals 
of St(R) and St2(R) in (28) lead to different values. 
Thus, (72 reveals here a measure of the lowering of the 
degree of order at the periphery of the domain. 

The non-uniform ordering within the domain gives 
the following relations instead of (18), (19) and (26), 

Vo f a°(qi)dq,=(N[/n){l  f s2(R)dR}, (29) 

(1; 
a°(qi=O)= (N[/n) St(R) dR (30) 

and 
/-  

V 0 J {a°(qi)} 1/2 d q t =  (N[/n) v2 St(O). (31) 

Here, we can put S t ( R  ) : 1 at R = 0, assuming that the 
degree of order at the center of the domain is perfect.* 

* Even in the case that the order is not perfect, it is possible by 
putting St(O) = I to judge whether the ordering is uniform or not. 

Then, (31) gives (iV[/n) v2, a square root of the number 
density of the microdomains. St(R) ,  associated with the 
domain shape, can be written from (I-13) and (7a) etc. 
as 

St (R  ) = (n/N[) v o _t {ct°(qi)}v2 exp (2x/qi. R) dqi. 

(32) 

From the correspondence of (29) to (18), an 'effective 
number'  of atoms in a domain is given as 

(n) t  = (l/v0) j S2(R) dR. (33) 

The interdomain correlation function Ptt,(X) can be 
evaluated in the same way as in § 3. 

In § 3, it was seen that only the differences between 
the interdomain correlation functions Ptt,(X) are 
known. In the case of the L 12 type, for example, if we 
introduce a quantity Do(X) = ~ t  Pi t (X) ,  a total pair 
correlation function of the domains, the partial corre- 
lation functions P u ( X )  are given l~y 

P,I(X) = (¼){Do(X) + D,oo(X) + Dolo(X) 

+ Dool(X) }, 

P,2(X) = (¼){Do(X)-  D,oo(X ) -- Do,o(X ) 

+ Dool(X) }, 

P13(X) = (¼){Do(X) + D,oo(X) -- Do,o(X ) 

- -  D o o , ( X )  } , 

P14(X) = (¼) {Do(X) - D,oo(X ) + Do,o(X) 

- -  D o o , ( X ) } .  ( 3 4 )  

The P1t(X)'s can be calculated from these equations, 
provided that D0(X ) is obtained in an alternative way. 
The same is true for the L 10 and L 11 types. 

The author wishes to thank Professor H. Iwasaki for 
valuable comments and discussions. 

///( Et(R) = 1 

~ R) 

S t 2 ( R ) ~  

0 : ' R  

Fig. 5. Illustration of the ordering function St(R) and its square. 
Et(R) is here taken to be unity within a domain. 
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